

Technical parameters:

Machine type		PNB-5E
Dimensions	Length	550 mm
	Width	500 mm
	Height	1010 mm
Weight		
Nominal voltage	$3 / \mathrm{N} / \mathrm{PE} \mathrm{AC}$	
	$400 / 230 \mathrm{~V}$	
Nominal frequency	$50 \mathrm{~Hz}(60 \mathrm{~Hz})$	
Nominal current	max. 2,2 A	
Shielding degree	min. IP 54	
Spindle speed	$4200 / \mathrm{min}$	
Automatic cut size setting scale increments (approx.)	$0,01 \mathrm{~mm}-$ per scale division	
Max die diameter	152 mm	
Max. length of punch	208 mm	

The main benefits of timely grinding:

- lower wear and tear parts of punching machine
- lower costs for removing burr - deburring
- extending lifetime of tools - saving costs

Extending lifetime of tools

The speed of the blunting of particular tool depends on many factors (properties of materials, geometry and adjustment of tools etc.).
The course of blunting tool is irregular and is shown in the chart (red curve).

After the first deburring of the edge, the tool lasts a long time with minimal blunting. However after exceeding the radius (about 0.5 to 1.0 mm) - the speed of blunting is rapidly increasing. Timely grinding can avoid this final phase of lunting and achieve increased lifetime of tools, as shown in the chart (green curve).

